Using Many Eyes Wikified to Visualise Guardian Data Store Data on Google Docs

Last week, I posted a quick demo of how to visualise data stored in a Google spreadsheet in Many Eyes Wikified (HEFCE Grant Funding, in Pictures).

The data I used was the latest batch of HEFCE teaching funding data, but Joss soon tweeted to say he’d got Research funding data up on Google spreadsheets, and could I do something with that? You can see the results here: Visualising UK HEI Research Funding data on many Eyes Wikified (Joss has also had a go: RAE: UK research funding results visualised).

Anyway, today the Guardian announced a new content API (more on that later – authorised developer keys are still like gold dust), as well as the Guardian data store (strapline: “facts you can use”) and the associated Data Store Blog.

Interestingly, the data is being stored on Google docs, in part because Google spreadsheets offer an API and a wide variety of export formats.

As regular readers will know, one of the export formats from Google spreadsheets is CSV – Comma Separated Variable data – which just so happens to be liked by services such as Dabble DB and Many Eyes. I’ll try to come up with a demo of how to mash-up several different data sets in Dabble DB over the next few days, but as I’ve a spare half-hour now, I thought I’d post a qiuck demo of how to visualise some of the Guardian data store spreadsheet data in Many Eyes Wikified.

So to start, let’s look at the the RAE2008 results data – University research department rankings (you can find the actual data here:

If you speak URL, you’ll know that you can get the CSV version of the data by adding &output=csv to the URL, like this:

Inspection of the CSV output suggests there’s some crap at the top we don’t want – i.e. not actual column headings – as well as the the end of the file:

(Note this “crap” is actually important metadata – it describes the data and its provenance – but it’s not the actual data we want to visualise).

Grabbing the actualt data, without the metadata, can be achieve by grabbing a particular range of cells using the &range= URL argument. Inspection of the table suggests that meaningful data can be found in the columnar range of A to H; guesswork and a bit of binary search identifies the actual range of cell data as A2:H2365 – so we can export JUST the data, as CSV, using the URL

If you create a new page on Many Eyes Wikified, this data can be imported into a wiki page there as follows:

We can now use this data page as the basis of a set of Many Eyes visualisations. Noting that the “relative URL address” of the data page is ousefulTestboard/GuardianUKRAERankings2008 (the full URL of the wikified data page is, create a new page and put a visualisation placeholder or two in it:

Saving that page – and clicking through on the visualisation placeholder links – means you can now create your visualisation (Many Eyes seems to try to guess what visualisation you want if you use an appropriate visulisation name?):

Select the settings you want for you visualisation, and hit save:

A visualisation page will be created automatically, and a smaller, embedded version of the visualisation will appear in the wiki page:

If you visit the visualisation page – for example this Treemap visualisation, you should find it is fully interactive – which means you can explore the data for yourself, as I’ll show in a later post…

See more examples here: RAE 2008 Treemap; RAE 2008 Bubble Diagram; RAE 2008 bar chart.


  1. Graham

    Hi there, hoping to play with all of this really soon, but in the meantime just wanted to thank you for all the really useful posts about Many Eyes, Dabble, etc. Really great to see how easy it is to do these days, although the screenshots really do paint a thousand words…


  2. Pingback: What people are saying about the Guardian’s Open Platform -
  3. Pingback: Filtering Guardian Data Blog/Google Spreadsheet Data With Yahoo! Pipes « OUseful.Info, the blog…
  4. Pingback: My Guardian OpenPlatform API’n’Data Hacks Roundup « OUseful.Info, the blog…
  5. Pingback: Automating PowerPoint with Python
  6. Pingback: creating buzzword app part 1 | escapingeggshells