OUseful.Info, the blog…

Trying to find useful things to do with emerging technologies in open education

Local News Templates – A Business Opportunity for Data Journalists?

As well as serendipity, I believe in confluence

A headline in the Press Gazette declares that Trinity Mirror will be roll[ing] out five templates across 130-plus regional newspapers as emphasis moves to digital. Apparently, this follows a similar initiative by Johnston Press midway through last year: Johnston to roll out five templates for network of titles.

It seems that “key” to the Trinity Mirror initiative is the creation of a new “Shared Content Unit” based in Liverpool that will provide features content to Trinity’s papers across the UK [which] will produce material across the regional portfolio in print and online including travel, fashion, food, films, books and “other content areas that do not require a wholly local flavour”.

[Update - 25/3/13: Trinity Mirror to create digital data journalism unit to produce content for online and printed titles]

In my local rag last week, (the Isle of Wight County Press), a front page story on the Island’s gambling habit localised a national report by the Campaign for Fairer Gambling on Fixed Odds Betting Terminals. The report included a dataset (“To find the stats for your area download the spreadsheet here and click on the arrow in column E to search for your MP”) that I’m guessing (I haven’t checked…) provided some of the numerical facts in the story. (The Guardian Datastore also republished the data (£5bn gambled on Britain’s poorest high streets: see the data) with an additional column relating to “claimant count”, presumably the number of unemployment benefit claimants in each area (again, I haven’t checked…)) Localisation appeared in several senses:

IWCP gambling

So for example, the number of local betting shops and Fixed Odds betting terminals was identified, the mooted spend across those and the spend per head of population. Sensemaking of the figures was also applied by relating the spend to an equivalent number of NHS procedures or police jobs. (Things like the BBC Dimensions How Big Really provide one way of coming up with equivalent or corresponding quantities, at least in geographical area terms. (There is also a “How Many Really” visualisation for comparing populations.) Any other services out there like this? Maybe it’s possible to craft Wolfram Alpha queries to do this?)

Something else I spotted, via RBloggers, a post by Alex Singleton of the University of Liverpool: an Open Atlas around the 2011 Census for England and Wales, who has “been busy writing (and then running – around 4 days!) a set of R code that would map every Key Statistics variable for all local authority districts”. The result is a set of PDF docs for each Local Authority district mapping out each indicator. As well as publishing the separate PDFs, Alex has made the code available.

So what’s confluential about those?

The IWCP article localises the Fairer Gambling data in several ways:
- the extent of the “problem” in the local area, in terms of numbers of betting shops and terminals;
- a consideration of what the spend equates to on a per capita basis (the report might also have used a population of over 18s to work out the average “per adult islander”); note that there are also at least a couple of significant problems with calculating per capita averages in this example: first, the Island is a holiday destination, and the population swings over the summer months; secondly, do holidaymakers spend differently to residents on this machines?
- a corresponding quantity explanation that recasts the numbers into an equivalent spend on matters with relevant local interest.

The Census Atlas takes one recipe and uses it to create localised reports for each LA district. (I’m guessing with a quick tweak,separate reports could be generated for the different areas within a single Local Authority).

Trinity Mirror’s “Shared Content Unit” will produce content “that do[es] not require a wholly local flavour”, presumably syndicating it to its relevant outlets. But it’s not hard to also imagine a “Localisable Content” unit that develops applications that can help produced localised variants of “templated” stories produced centrally. This needn’t be quite as automated as the line taken by computational story generation outfits such as Narrative Science (for example, Can the Computers at Narrative Science Replace Paid Writers? or Can an Algorithm Write a Better News Story Than a Human Reporter?) but instead could produce a story outline or shell that can be localised.

A shorter term approach might be to centrally produce data driven applications that can be used to generate charts, for example, relevant to a locale in an appropriate style. So for example, using my current tool of choice for generating charts, R, we could generate something and then allow local press to grab data relevant to them and generate a chart in an appropriate style (for example, Style your R charts like the Economist, Tableau … or XKCD). This approach saves duplication of effort in getting the data, cleaning it, building basic analysis and chart tools around it, and so on, whilst allowing for local customisation in the data views presented. With the increasing number of workflows available around R, (for example, RPubs, knitr, github, and a new phase for the lab notebook, Create elegant, interactive presentations from R with Slidify, [Wordpress] Bloggin’ from R).

Using R frameworks such as Shiny, we can quickly build applications such as my example NHS Winter Sitrep data viewer (about) that explores how users may be able to generate chart reports at Trust or Strategic Health Authority level, and (if required) download data sets related to those areas alone for further analysis. The data is scraped and cleaned once, “centrally”, and common analyses and charts coded once, “centrally”, and can then be used to generate items at a local level.

The next step would be to create scripted story templates that allow journalists to pull in charts and data as required, and then add local colour – quotes from local representatives, corresponding quantities that are somehow meaningful. (I should try to build an example app from the Fairer Gaming data, maybe, and pick up on the Guardian idea of also adding in additional columns…again, something where the work can be done centrally, looking for meaningful datasets and combining it with the original data set.)

Business opportunities also arise outside media groups. For example, a similar service idea could be used to provide story templates – and pull-down local data – to hyperlocal blogs. Or a ‘data journalism wire service’ could develop applications either to aid in the creation of data supported stories on a particular topic. PR companies could do a similar thing (for example, appifying the Fairer Gambling data as I “appified” the NHS Winter sitrep data, maybe adding in data such as the actual location of fixed odds betting terminals. (On my to do list is packaging up the recently announced UCAS 2013 entries data.)).

The insight here is not to produce interactive data apps (aka “news applications”) for “readers” who have no idea how to use them or what read from them whatever stories they might tell; rather, the production of interactive applications for generating charts and data views that can be used by a “data” journalist. Rather than having a local journalist working with a local team of developers and designers to get a data flavoured story out, a central team produces a single application that local journalists can use to create a localised version of a particular story that has local meaning but at national scale.

Note that by concentrating specialisms in a central team, there may also be the opportunity to then start exploring the algorithmic annotation of local data records. It is worth noting that Narrative Science are already engaged in this sort activity too, as for example described in this ProPublica article on How To Edit 52,000 Stories at Once, a news application that includes “short narrative descriptions of almost all of the more than 52,000 schools in our database, generated algorithmically by Narrative Science”.

PS Hmm… I wonder… is there time to get a proposal together on this sort of idea for the Carnegie Trust Neighbourhood News Competition? Get in touch if you’re interested…

Written by Tony Hirst

February 7, 2013 at 1:02 pm

Posted in Infoskills, OBU, Thinkses

Tagged with ,

Follow

Get every new post delivered to your Inbox.

Join 727 other followers

%d bloggers like this: