OUseful.Info, the blog…

Trying to find useful things to do with emerging technologies in open education

Posts Tagged ‘newsrw

Guardian Datastore MPs’ Expenses Spreadsheet as a Database

Continuing my exploration of what is and isn’t acceptable around the edges of doing stuff with other people’s data(?!), the Guardian datastore have just published a Google spreadsheet containing partial details of MPs’ expenses data over the period July-Decoember 2009 (MPs’ expenses: every claim from July to December 2009):

thanks to the work of Guardian developer Daniel Vydra and his team, we’ve managed to scrape the entire lot out of the Commons website for you as a downloadable spreadsheet. You cannot get this anywhere else.

In sharing the data, the Guardian folks have opted to share the spreadsheet via a link that includes an authorisation token. Which means that if you try to view the spreadsheet just using the spreadsheet key, you won’t be allowed to see it; (you also need to be logged in to a Google account to view the data, both as a spreadsheet, and in order to interrogate it via the visualisation API). Which is to say, the Guardian datastore folks are taking what steps they can to make the data public, whilst retaining some control over it (because they have invested resource in collecting the data in the form they’re re-presenting it, and reasonably want to make a return from it…)

But in sharing the link that includes the token on a public website, we can see the key – and hence use it to access the data in the spreadsheet, and do more with it… which may be seen as providing a volume add service over the data, or unreasonably freeloading off the back of the Guardian’s data scraping efforts…

So, just pasting the spreadsheet key and authorisation token into the cut down Guardian datastore explorer script I used in Using CSV Docs As a Database to generate an explorer for the expenses data.

So for example, we can run for example run a report to group expenses by category and MP:

MP expesnes explorer

Or how about claims over 5000 pounds (also viewing the information as an HTML table, for example).

Remember, on the datastore explorer page, you can click on column headings to order the data according to that column.

Here’s another example – selecting A,sum(E), where E>0 group by A and order is by sum(E) then asc and viewing as a column chart:

Datastore exploration

We can also (now!) limit the number of results returned, e.g. to show the 10 MPs with lowest claims to date (the datastore blog post explains that why the data is incomplete and to be treated warily).

Limiting results in datstore explorer

Changing the asc order to desc in the above query gives possibly a more interesting result, the MPs who have the largest claims to date (presumably because they have got round to filing their claims!;-)

Datastore exploring

Okay – enough for now; the reason I’m posting this is in part to ask the question: is the this an unfair use of the Guardian datastore data, does it detract from the work they put in that lets them claim “You cannot get this anywhere else”, and does it impact on the returns they might expect to gain?

Sbould they/could they try to assert some sort of database collection right over the collection/curation and re-presentation of the data that is otherwise publicly available that would (nominally!) prevent me from using this data? Does the publication of the data using the shared link with the authorisation token imply some sort of license with which that data is made available? E.g. by accepting the link by clicking on it, becuase it is a shared link rather than a public link, could the Datastore attach some sort of tacit click-wrap license conditions over the data that I accept when I accept the shared data by clicking through the shared link? (Does the/can the sharing come with conditions attached?)

PS It seems there was a minor “issue” with the settings of the spreadsheet, a result of recent changes to the Google sharing setup. Spreadsheets should now be fully viewable… But as I mention in a comment below, I think there are still interesting questions to be considered around the extent to which publishers of “public” data can get a return on that data?

Written by Tony Hirst

June 25, 2010 at 12:51 pm

Using Google Spreadsheets Like a Database – The QUERY Formula

In this year’s student satisfaction tables, which universities have a good teaching score but low employment prospects? How would you find out? In this post, you’ll find out…

Whether or not it was one of my resolutions, one of the things I want to do more this year is try to try to make more use of stuff that’s already out there, and come up with recipes that hopefully demonstrate to others how to make use of those resources.

So today’s trick is prompted by a request from @paulbradshaw about “how to turn a spreadsheet into a form-searchable database for users” within a Google spreadsheet (compared to querying a google spreadsheet via a URI, as described in Using Google Spreadsheets as a Database with the Google Visualisation API Query Language).

I’m not going to get as far as the form bit, but here’s how to grab details from a Google spreadsheet, such as one of the spreadsheets posted to the Guardian Datastore, and query it as if it was a database in the context of one of your own Google spreadsheets.

This trick actually relies on the original Google spreadsheet being shared in “the right way”, which for the purposes of this post we’ll take to mean – it can be viewed using a URL of the form:

http://spreadsheets.google.com/ccc?key=SPREADSHEETKEY&hl=en

(The &hl=en on the end is superfluous – it doesn’t matter if it’s not there…) The Guardian Datastore folks sometimes qualify this link with a statement of the form Link (if you have a Google Docs account).

If the link is of the form:
http://spreadsheets.google.com/pub?key=SPREADSHEETKEY
just change pub to ccc

So for example, take the case of the 2010-2011 Higher Education tables (described here):

http://spreadsheets.google.com/ccc?key=reBYenfrJHIRd4voZfiSmuw

The first thing to do is to grab a copy of the data into our own spreadsheet. So go to Google Docs, create a new spreadsheet, and in cell A1 enter the formula:
=ImportRange(“reBYenfrJHIRd4voZfiSmuw”,”Institutional Table!A1:K118″)

When you hit return, the spreadsheet should be populated with data from the Guardian Datastore spreadsheet.

So let’s see how that formula is put together.
=ImportRange(“reBYenfrJHIRd4voZfiSmuw”,”Institutional Table!A1:K118″)

Firstly, we use the =ImportRange() formula, which has the form:
=ImportRange(SPREADSHEETKEY, SHEET!RANGE)

This says that we want to import a range of cells from a sheet in another spreadsheet/workbook that we have access to (such as one we own, one that is shared with us in an appropriate way, or a public one). The KEY is the key value from the URL of the spreadsheet we want to import data from. The SHEET is the name of the sheet the data is on:

The RANGE is the range of the cells we want to copy over from the external spreadsheet.

Enter the formula into a single cell in your spreadsheet and the whole range of cells identified in the specified sheet of the original spreadsheet will be imported to your spreadsheet.

Give the sheet a name (I called mine ‘Institutional Table 2010-2011′; the default would be ‘Sheet1′).

Now we’re going to treat that imported data as if it was in a database, using the =QUERY() formula.

Create a new sheet, call it “My Queries” or something similar and in cell A1 enter the formula:

=QUERY(‘Institutional Table 2010-2011’!A1:K118,”Select A”)

What happens? Column A is pulled into the spreadsheet is what. So how does that work?

The =QUERY() formula, which has the basic form =QUERY(RANGE,DATAQUERY), allows us to run a special sort of query against the data specified in the RANGE. That is, you can think of =QUERY(RANGE,) as specifying a database; and DATAQUERY as a database query language query (sic) over that database.

So what sorts of DATAQUERY can we ask?

The simplest queries are not really queries at all, they just copy whole columns from the “database” range into our “query” spreadsheet.

So things like:

  • =QUERY(‘Institutional Table 2010-2011’!A1:K118,“Select C”) to select column C;
  • =QUERY(‘Institutional Table 2010-2011’!A1:K118,“Select C,D,G,H”) to select columns C, D, G and H;

So looking at copy of the data in our spreadsheet, import the columns relating to the Institution, Average Teaching Score, Expenditure per Student and Career Prospects, I’d select columns C, D, F and H:

like this:
=QUERY(‘Institutional Table 2010-2011’!A1:K118,“Select C,D, F,H”)
to give this:

(Remember that the column labels in the query refer to the spreadsheet we are treating as a database, not the columns in the query results sheet shown above.)

All well and good. But suppose we only want to look at institutions with a poor teaching score (column D), less than 40? Can we do that too? Well, yes, we can, with a query of the form:

“Select C,D, F,H where D < 40"

(The spaces around the less than sign are important… if you don’t include them, the query may not work.)

Here’s the result:

(Remember, column D in the query is actually the second selected column, which is placed into column B in the figure shown above.)

Note that we can order the results according to other columns to. So for example, to order the results according to increasing expenditure (column F), we can write:

“Select C,D, F,H where D < 40 order by F asc"

(For decreasing order, use desc.)

Note that we can run more complex queries too. So for example, if we want to find institutions with a high average teaching score (column D) but low career prospects (column H) we might ask:

“Select C,D, F,H where D > 70 and H < 70"

And so on…

Over the nect week or two, I’ll post a few more examples of how to write spreadsheet queries, as well as showing you a trick or two about how to build a simple form like interface within the spreadsheet for constructing queries automatically; but for now, why try having a quick play with the =QUERY() formula yourself?

Written by Tony Hirst

January 19, 2010 at 2:21 pm

My Presentation for News:Rewired – Doing the Data Mash

For once, I didn’t put links into a presentation, so here instead are the link resources for my News:Rewired presentation:

(If I get a chance over the next week or so, I may even try to make a slidecast out of the above…)

The link story for the presentation goes something like this:

If there’s something “dataflow” related you’d like see explored here, please leave a request as a comment and I’ll see what I can do :-) I’ve also started a newsrw) category (view it here) which I’ll start posting relevant content to; (see also the datajourn tag).

Written by Tony Hirst

January 14, 2010 at 3:19 pm

Posted in newsrw, Presentation

Tagged with ,

Tinkering With Timetric – London Datastore Borough Population Data

Earlier this week, the Greater London Authority opened up a preview/prototype of the London Datastore (news reports).

Many of the data sets I quickly looked at are being made available as CSV and XML data feeds, which is very handy :-)

Anyway, in preparation for having some new recipes to drop into conversation at News:Rewired next week, I thought I’d have a quick play with visualising some of the timeseries data in Timetric to see what sorts of “issues” it might throw up.

So how does Timetric like to import data? There are three main ways – copy’n’paste, import a spreadsheet (CSV or XLS) from your desktop, or grab the data from a URL.

Obviously, the online route appeals to me:-)

Secondly, how does Timetirc expect the data to be formatted? At the moment, quite rigidly, it seems:

To publish data in a format Timetric can understand, you should expose it in one of two formats — either CSV or Excel (.xls) format. Dates/times must be in the first column of the file, and values in the second.

For importing CSV data, the date/time should be in W3C datetime format (like 2009-09-14 17:34:00) or, optionally, Unix timestamps as floating point numbers.

Hmmm, so at the moment, I can only import on time series at a time, unless I’m a geeky hacker type and know how to “write a programme” to upload multiple sets of data from a multi-column file via the API… But OUseful.info isn’t about that, right?!;-)

Let’s look at some of the London datastore data, anyway. How about this – “Historic Census Population” data.

Let’s preview the data in a Google spreadsheet – use the formula:
=ImportData(“http://data.london.gov.uk/datafiles/demographics/census-historic-population-borough.csv&#8221;)

Ok – so we have data for different London Boroughs, for every decade since 1801. But is the data in the format that Timetric wants?

- first no: the dates run across columns rather than down rows.

So we need to swap rows with columns somehow. We can do this in a Google spreadsheet with the TRANSPOSE formula. While we’re doing the transposition, we might as well drop the Area Code column and just use the area/borough names. In a new sheet, use the formula:
=TRANSPOSE( ‘Original Data’!A1:W )
(Note, I’d renamed the sheet containing the imported data as Original Data; typically it would be Sheet1, by default.)

NB It seems I could have combined the import and transpose formulae:

Now we hit the second no: the dates are in the wrong format.

Remember, for Timetric “the date/time should be in W3C datetime format (like 2009-09-14 17:34:00) or, optionally, Unix timestamps as floating point numbers.”

My fudge here was to copy all the data except the time data to a new sheet, and just add the time data by hand, using a default day/month/time of midnight first January of the appropriate year. Note that this is not good practice – the data in this sheet is now not just a representation of the original data, it’s been messed around with and the data field is not the original one, nor even derived from the original one (I don’t think Google spreadsheets has a regular expression search/replace formula that would allow me to do this?)

Anyway, that’s as may bee;-). To keep the correct number format (Google spreadsheets will try to force a different representation of the date), the format of the date cells needs to be set explicitly:

So now we have the data in rows, with the correct data format, the dates being added by hand. Remembering that Timetric can only import one time series at a time, let’s try with the first data set. We can grab the CSV for the first two columns as follows – from the Share Menu, “Publish as Web Page” option, choose the following settings:

(The ‘for timetric’ sheet is the sheet with the tidied date field.)

Here’s the CSV URI, that we can use to get the data in Timetric:

http://spreadsheets.google.com/pub?key=tufGbjv41z8fDauvzyfY7ZA&single=true&gid=2&range=A1%3AB22&output=csv

The upload took a good couple of minutes, with no reassuring user notifications (just the browser appearing to hang waiting for a new timetric page to load), but evntually it got there…

(And yes, that drop in population is what the data says – though for all the other boroughs you get a curve shaped more as you’d expect;-)

To import other data sets, we need to insert a new Date column, along with dat data (I copied it from the first Dat column I’d created) and then grab the CSV URI for the appropriate columns:

Anyway, there we have it – a recipe (albeit a slightly messy one) for getting CSV data out of the London datastore, into a Google spreadsheet, transposing its rows and columns, and then generating date information formatted just how Timetric likes it, before grabbing a new CSV data feed out of the spreadsheet and using it to import data into Timetric.

Written by Tony Hirst

January 10, 2010 at 11:32 am

Follow

Get every new post delivered to your Inbox.

Join 769 other followers