Tagged: tweetminster

Interest Differencing: Folk Commonly Followed by Tweeting MPs of Different Parties

Earlier this year I doodled a recipe for comparing the folk commonly followed by users of a couple of BBC programme hashtags (Social Media Interest Maps of Newsnight and BBCQT Twitterers). Prompted in part by a tweet from Michael Smethurst/@fantasticlife about generating an ESP map for UK politicians (something I’ve also doodled before – Sketching the Structure of the UK Political Media Twittersphere) I drew on the @tweetminster Twitter lists of MPs by party to generate lists of folk commonly followed by the MPs of each party.

Using the R wordcloud library commonality and comparison clouds, we can get a visual impression of folk commonly followed in significant numbers by all the MPs of the three main parties, as well as the folk the MPs of each party follow significantly and differentially to the other parties:

There’s still a fair bit to do making the methodology robust (for example, being able to cope with comparing folk commonly followed by different sets of users where the size of the set differs to a significant extent (for example, there is a large difference between the number of tweeting Conservative and LibDem MPs). I’ve also noticed that repeatedly running the comparison.cloud code turns up different clouds, so there’s some element of randomness in there. I guess this just adds to the “sketchy” nature of the visualisation; or maybe hints at a technique akin to the way a photogrpaher will take multiple shots of a subject before picking one or two to illustrate something in particular. Which is to say: the “truthiness” of the image reflects the message that you are trying to communicate. The visualisation in this case exposes a partial truth (which is to say, no absolute truth), or particular perspective about the way different groups differentially follow folk on Twitter. A couple of other quirks I’ve noticed about the comparison.cloud as currently defined: firstly, very highly represented friends are sized too large to appear in the cloud (which is why very commonly followed folk across all sets – the people that appear in the commonality cloud – tend not to appear) – there must be a better way of handling this? Secondly, if one person is represented so highly in one group that they don’t appear in the cloud for that group, they may appear elsewhere in the cloud. (So for example, I tried plotting clouds for folk commonly followed by a sample of the followers of @davegorman, as well as the people commonly followed by the friends of @davegorman – and @davegorman appeared as a small label in the friends part of the comparison.cloud (notwithstanding the fact that all the followers of @davegorman follow @davegorman, but not all his friends do… What might make more sense would be to suppress the display of a label in the colour of a particular group if that label has a higher representation in any of the other groups (and isn’t displayed because it would be too large)).

That said, as a quick sketch, I think there’s some information being revealed there (the coloured comparison.cloud seems to pull out some names that make sense as commonly followed folk peculiar to each party…). I guess way forward is to start picking apart the comparison.cloud code, another is to explore a few more comparison sets? Suggestions welcome as to what they might be…:-)

PS by the by, I notice via the Guardian datablog (Church vs beer: using Twitter to map regional differences in US culture) another Twitter based comparison project – Church or Beer? Americans on Twitter – which looked at geo-coded Tweets over a particular time period on a US state-wide basis and counted the relative occurrence of Tweets mentioning “church” or “beer”…

UK Journalists on Twitter

A post on the Guardian Datablog earlier today took a dataset collected by the Tweetminster folk and graphed the sorts of thing that journalists tweet about ( Journalists on Twitter: how do Britain’s news organisations tweet?).

Tweetminster maintains separate lists of tweeting journalists for several different media groups, so it was easy to grab the names on each list, use the Twitter API to pull down the names of people followed by each person on the list, and then graph the friend connections between folk on the lists. The result shows that the hacks are follow each other quite closely:

UK Media Twitter echochamber (via tweetminster lists)

Nodes are coloured by media group/Tweetminster list, and sized by PageRank, as calculated over the network using the Gephi PageRank statistic.

The force directed layout shows how folk within individual media groups tend to follow each other more intensely than they do people from other groups, but that said, inter-group following is still high. The major players across the media tweeps as a whole seem to be @arusbridger, @r4today, @skynews, @paulwaugh and @BBCLauraK.

I can generate an SVG version of the chart, and post a copy of the raw Gephi GDF data file, if anyone’s interested…

PS if you’re interested in trying out Gephi for yourself, you can download it from gephi.org. One of the easiest ways in is to explore your Facebook network

PPS for details on how the above was put together, here’s a related approach:
Trying to find useful things to do with emerging technologies in open education
Doodlings Around the Data Driven Journalism Round Table Event Hashtag Community

For a slightly different view over the UK political Twittersphere, see Sketching the Structure of the UK Political Media Twittersphere. And for the House and Senate in the US: Sketching Connections Between US House and Senate Tweeps