In passing, an observation…
Many OU modules require students to provide their own computer subject to a university wide “minimum computer specificiation” policy. This policy is a cross-platform one (students can run Windows, Mac or Linux machines) but does allow students to run quite old versions of operating systems. Because some courses require students to install desktop software applications, this also means that tablets and netbooks (eg Chromebooks) do not pass muster.
On the module I work primarily on, we supply students with a virtual machine preconfigured to meet the needs of the course. The virtual machine runs on a cross-platform application (Virtualbox) and will run on a min spec machine, although there is a hefty disk space requirement: 15GB of free space required to install and run the VM (plus another 15-20GB you should always have free anyway if you want your computer to keep running properly, be able to install updates etc.)
Part of the disk overhead comes from another application we require students to use called vagrant. This is a “provisioner” application that manages the operation of the VirtualBox virtual machine from a script we provide to students. The vagrant application caches the raw image of the VM we distribute so that fresh new instances of it can be created. (This means students can throw away the wokring copy of their VM and create a fresh one if they break things; trust me, in distance edu, this is often the best fix.)
One of the reasons why we (that is, I…) took the vagrant route for managing the VM was that it provided a route to ship VM updates to students, if required: just provide them with a new Vagrantfile (a simple text file) that is used to manage the VM and add in an update routine to it. (In four years of running the course, we havenlt actually done this…)
Another reason for using Vagrant was that it provides an abstraction layer between starting and stopping the virtual machine (via a simple commandline command such as vagrant up
, or desktop shortcut that runs a similar command) and the virtual machine application that runs the virtual machine. In our case, vagrant instructs Virtualbox running on the student’s own computer, but we can also create Vagrantfiles that allow students to launch the VM on a remote host if they have credentials (and credit…) for that remote host. For example, the VM could be run on Amazon Web Services/AWS, Microsoft Azure, Google Cloud, Linode, or Digital Ocean. Or on an OU host, if we had one.
For the next presentation of the module, I am looking to move away from the Virtualbox VM and move the VM into a Docker container†. Docker offers an abstraction layer in much the same way that vagrant does, but using a different virtualisation model. Specifically, a simple Docker command can be used to launch a Dockerised VM on a student’s own computer, or on a remote host (AWS, Azure, Google Cloud, Digital Ocean, etc.)
† We could use separate linked Docker containers for each service used in the course — Jupyter notebooks, PostgreSQL, MongoDB, OpenRefine — or we could use a monolithic container that includes all the services. There are advantages and disadvantages to each that I really do need to set down on paper/in a blog post at some point…
So how does this help in distance education?
I’ve already mentioned that we require students to provide a certain minimum specification computer, but for some courses, this hampers the activities we can engage students in. For example, in our databases course, giving students access to a large database running on their own computer may not be possible; for an upcoming machine learning course, access to a GPU is highly desirable for anything other than really simple training examples; in an updated introductory robotics module, using realistic 3D robot simulators for even simple demos requires access to a gamer level (GPU supported) computer.
In a traditional university, physical access to computers and computer labs running pre-installed, university licensed software packages on machines capable of providing them for students who can’t run the same on their own machines may be available.
In my (distance learning) institution, access to university hosted software is not the norm: students are expected to provide their own computer hardware (at least to minimum spec level) and install the software on it themselves (albeit software we provide, and software that we often build installers for, at least for users of Windows machines).
What we don’t do, however, is either train students in how to provision their own remote servers, or provide software to them that can easily be provisioned on remote servers. (I noted above that our vagrant manager could be used to deploy VMs to remote servers, and I did produce demo Vagrantfiles to support this, but it went no further than that.)
This has made me realise that we make OUr distance learning students pretty much wholly responsible for meeting any computational needs we require of them, whilst at the same time not helping them develop skills that allow that them to avail themselves of self-service, affordable, metered remote computation-on-tap (albeit with the constraint of requiring a netwrok connection to access the remote service).
So what I’m thinking now is that now really is the time to start upskilling OUr distance learners, at least in disciplines that are computationally related, early on and in the following ways:
- a nice to have — provide some academic background: teach students about what virtualisation is;
-
an essential skill, but with a really low floor — technical skills training: show students how to launch virtual servers of their own.
We should also make software available that is packaged in a way that the same environment can be run locally or remotely.
Another nice to have might be helping students reason about personal economic consequences, such as the affordability of different approaches in their local situation, which is to say: buying a computer and running things locally vs. buying something that can run a browser and run things remotely over a network connection.
As much as anything, this is about real platform independence, being open as to, and agnostic of, what physical compute device a student has available at home (whether it’s a gamer spec desktop computer or a bottom of the range Chromebook) and providing them with both software packages that really can run anywhere and the tools and skills to help students run them anywhere.
In many respects, using abstraction layer provisioning tools like vagrant and Docker, the skills to run software remotely are the same as running them locally, with the additional overhead that students have a once only requirement to sign up to a remote host and set up credentials that allow them to access the remote service from the provisioner service that runs on their local machine.